Using Ontologies for Data and Semantic Integration

Monica Crubézy

Stanford Medical Informatics, Stanford University

~~

November 4, 2003

Ontologies

- Conceptualize a domain of discourse, an area of expertise
 - Concepts (drug, patient, gene, clinical trial)
 - Properties, or attributes (dosage, age, location)
 - Relationships (contra-indications, body parts)
- Adhere to a modeling formalism, such as:
 - Frame-based representation
 - Description logics

Protégé

- A general-purpose environment for ontologyediting and knowledge-base construction
 - Open-source, freely available (<u>protégé.stanford.edu</u>)
 - Interoperable with standards for knowledge representation (OKBC, RDF/S and more recently OWL)
 - Extensible in many ways (GUI, plugins, storage)
- Main frame-based modeling constructs
 - Classes represent concepts, organized in hierarchy
 - Slots represent properties of classes, with restriction facets on their values (e.g., type, cardinality, range)
 - Instances represent individual members of a class, with particular values for slots
 - Instance-valued slots hold relationships with other concepts

GLIF: Ontology for Clinical Guidelines

Class hierarchy

List of slots for class Action_Step

GLIF: An instance of Action_Step

Automatically-generated instance-knowledge entry form

Specific values fill slots

Ontologies for Data Integration

- 1. Hold reference/standard models and data repositories (e.g., the GLIF ontology)
 - Existing examples speak for themselves
- Integrate data, metadata, and semantics of multiple data sources
 - A template ontology approach
- 3. Enable reconciliation and translation of data between different models
 - An ontology-mapping approach

1. (Standard) Ontologies in Biomedicine

Pervasive

- From controlled terminologies to full-blown ontologies
- Across the entire scope from biology to medicine

Many examplars

- Unified Medical Language System (UMLS)
- Medical terminology and concept description (GALEN/OpenGALEN)
- Foundational Model of Anatomy
- Guideline models (GLIF, SAGE)
- Gene Ontology (GO)
- Pharmacogenomics ontology (PharmGKB)

- ...

2. Integrating Data and Semantics

Syntactic differences

<sales="Robitussin">25</sales>

<sales="Pepto-Bismol">100</sales>

versus

Item	Sold		
Robit.	25		
PeptoB.	100		

Differences are usually explicit, but may be hard to reconcile.

Semantic differences

"Sales" means cases sold per week.

"Robitussin" means all Robitussinbranded medication.

versus

"Sales" is average number of bottles sold per hour.

"Robitussin" only refers to Robitussin DM.

Differences can be subtle and implicit.

Integrating Data for Epidemic Detection

• The BioSTORM Project:

- Biological Spatio-TempORal Module
- Within DARPA-funded **BioALIRT** program for epidemics surveillance based on non-traditional, pre-diagnostic data

• Purpose:

- To federate diverse non-traditional data sources (e.g., ER visits, 911 calls, absenteeism reports, pharmacy sales)
- To enable space/time analysis of data by various computational methods, for early epidemics detection

Integrating Data for Epidemic Detection Mapping BioSTORM Ontology Data Sources Ontology Control Structure Data Broker Data Mapper Customized Heterogeneous **Semantically Uniform Data Input Data Output Data Data Regularization** Data **Epidemic Detection Sources Middleware Problem Solvers**

Veterans Affair Data

ក្ខី 2:Data in Table 'PRESCRIPTIONS'									
⊡ 1									
	STATION	PATIENT	RXNO	ISSUE_DATE	DRUGID	٧A	CODE	DRUG	QTY
▶	558	62	2297666	10/29/99	12	CN	103	ASPIRIN 325MG EC TAB	7
	558	62	2297666	11/5/99	12	CN	103	ASPIRIN 325MG EC TAB	7
	558	62	2297666	11/11/99	12	CN	103	ASPIRIN 325MG EC TAB	7
	558	62	2297666	11/12/99	12	CN	103	ASPIRIN 325MG EC TAB	7
	558	62	2297667	10/29/99	2230	HS	501	INSULIN NOVOLIN 70/30 (NPH/REG) INJ NOVO	1
	558	62	2297668	10/29/99	827	XA	854	INSULIN SYRINGE 1ML 28G 0.5IN	10
	558	62	2297669	10/29/99	2029	CV	800	LISINOPRIL 10MG TAB	7
	558	62	2297669	11/5/99	2029	7	800	LISINOPRIL 10MG TAB	7
	558	62	2297669	11/11/99	2029	1	700	LISINOPRIL 10MG TAB	7
	558	62	2297669	11/12/99	2029		A	LISINOPRIL 10MG TAB	7
	558	62	2297670	10/29/99	49	1		MULTIVITAMIN/MINERALS CAP/TAB	7
	558	62	2297670	11/5/99	49	V		MULTIVITAMIN/MINERALS CAP/TAB	7
	558	62	2297670	11/11/99	49	V	Ì	MULTIVITAMIN/MINERALS CAP/TAB	7
	558	62	2297670	11/12/99	49	V		LTIVITAMIN/MINERALS CAP/TAB	7
	558	62	2297671	10/29/99	803	GA		A CONC 187MG TAB	14
	558	62	2297671	11/5/99	803	GA		CONC 187MG TAB	14
	558	62	2297671	11/11/00	803	GA		MC 187MC TAB	14

Several relational tables
Large space of data values
Semantics known to database creators

911 Emergency Call Data

One table in a relational database Constrained space of data values Arbitrary and unclear semantics

Data Integration Approaches

- Integration of explicit local models of each source
 - Database schema matching and query distribution
 - Ontology merging, alignment & integration
- Description of data sources using a single global model of entire domain of knowledge
 - SIMS (ISI): tie multiple DBs with rich semantics & construct complex queries
 - TAMBIS (U. Man.,UK): represent, access & query multiple molecular biology DBs
 - caBIO (NCI): model cancer biology & provide methods to query remote DBs transparently

A Template Data Source Ontology

A Template Data Sources Ontology

- A template ontology for contextualizing diverse data sources
 - Hybrid of local and global approaches
 - Extensible & customizable framework for describing data and their context in a way they can be compared and operated on homogeneously

Rationale

- Require minimal ontological commitment of data sources
- Preserve richness of data sources & flexibility in data use
- Introduce no bias to data integration (left to analytical methods)
- Ensure semantic uniformity of heterogeneous data

Template-based Approach

Specification (vocabulary-based)

SF 911 Data Source Ontology

SF 911 Dispatch Center

Located at Hunter's Point Receives Data from Greater SF Receives "911 Call" Data

911 Call

Contains: "Call Urgency", "Call Type," "Call Disposition," etc.

Valid on a specified date Call occurred at a specified location

Call Type

Contents: string

Specification: Semantics of the string

The Template Data Sources Ontology

Classes of Data Sources

An Instance of Data Source

An Instance of a Data Group

Providing Uniform Context to Data

Semantics

- Common language for describing and comparing surveillance data sources, for which no standards currently exist
- Extensible framework for incorporation of new data sources

Metadata

- Shared repository for enumerating available data sources in machine-processable form
- Explicit and extensible vocabulary consistent with LOINC standard for describing attributes of data and sources

Data

- Storage as instances of the ontology, OR
- Definition of how data can be accessed from data sources.

3. Reconciling Diverse Ontologies

 Many ontologies in biomedicine are federated models that fully or partially resemble standardization efforts

• But:

- It is hard to agree on reference ontologies
- We cannot expect people to adopt them (in the course of defining the standard, and even after)
- Various reference and proprietary models need to interact in component-based architectures
- So, tools are needed to align different models and translate data represented in a given model to and from another model

Operating on Data in Multiple Ways

Conceptual and Syntactic Mismatch

Notion of a "Data Group"

S recordedTemporalData	Instance	classes={TemporalDatum}
S dataGroupSpecification	Instance	classes={DataGroupSpecification}
S uid	String	
S recordedSpatialData	Instance	classes={SpatialDatum}
S originatingDataProvider I	Instance	classes={DataProvider}
S recorded LOINCData	Instance	classes={LOINCDatum}

Notion of an "Individual Event"

			0.00	
	S	validEvent	Boolean	
V	S	date	Instance	classes={TimePoint}
	S	dataSource	Class	parents={DataSourceType}
	S	illnessCategory	Class	parents={IllnessCategory}
	S	location	Instance	classes={GeoReference}

Conceptual and Syntactic Mapping

Notion of a "Data Group"

S recordedTemporalData
S dataGroupSpecification
S uid
S recordedSpatialData
Instance classes={TemporalDatum}
classes={DataGroupSpecification}
String
Instance classes

Instance

Instance

S recordedSpatialData S originatingDataProvider I

S recordedLOINCData

- filter out invalid events

- extract & reformat source, date, location

- abstract illness category

- drop uid

Notion of an "Individual Event"

		0.00	
S	validEvent	Boolean	
S	date	Instance	classes={TimePoint}
S	dataSource	Class	parents={DataSourceType}
S	illnessCategory	Class	parents={IllnessCategory}
S	location	Instance	classes={GeoReference}

Ontology Mapping for Data Exchange

Conceptual alignment

- change in domain of discourse
- difference in the level of knowledge granularity
- split and join of concepts & attributes

Value transformation

- abstraction, reduction
- aggregation or dispatch
- format change (unit change)
- custom computation (functional transformation)

Explicit Mapping Relations

- Isolate connections between ontologies
 - Each component ontology remains unchanged
 - Mapping relations express concept-level and attribute-level correspondences
 - Components focus and operate on their own view, format of knowledge & data
- Define mediation of data between ontology-based components
 - Mapping relations include the specification of rules of transformation of values
 - Components do not have to handle knowledge transformation internally

An Ontology of Mapping Relations

Mapping Data Groups to Individual Events

instance mapping

constant slot mapping

Mapping Data Groups to Individual Events

recursive slot mapping

on-demand instance mapping

Mapping Interpreter

- Processes the mapping relations between one or more source ontologies and a target ontology
- Produces a set of instances of the target ontology from the existing instances of the source ontology

Results of Mapping Interpretation

Source "Data Group" instance

Resulting target
"Individual Event"
instance

Varying Problem Solvers

Benefits of Ontology-based Data Integration

1. Modeling data with ontologies

- Provides rich, machine-processable semantics to data
- Facilitates knowledge communication and sharing

2. Integrating data with a template ontology

- Enables software components to operate on data in a uniform way
- Facilitates access to existing data sources for any new customer component
- Eliminates the need for customer components to be reprogrammed when a new data source is added

Benefits of Ontology-based Data Integration

- Integrating data models by ontology mapping
 - Isolates ontological connections and data-level transformations for instance migration
 - Enables flexible, interconnected, componentbased architectures
 - Each component relies on its own ontology
 - Components remain independent
 - Component coupling is explicit and maintainable

Perspectives

- Data integration will always be needed!
 - Before standards are agreed upon and used
 - When information systems need to integrate and analyze multiple data sources
 - When system components need to access or rely on different ontologies
- Adaptations to be made for richer ways of modeling ontologies (DLs in particular)
- Combination with other data-integration approaches: matching, merging, alignment

Aknowledgements

- At Stanford Medical Informatics
 - Zachary Pincus
 - Samson Tu, Mor Peleg
 - Natasha Noy
 - Prof. Mark Musen
- Funding agencies
 - National Library of Medicine
 - National Institute for Standards and Technology
 - National Cancer Institute
 - Defence Advanced Research Project Agency

Stanford Medical Informatics

http://smi.stanford.edu

The Protégé project

http://protege.stanford.edu

Monica Crubézy

http://smi.stanford.edu/people/crubezy
crubezy@smi.stanford.edu