The ETL pathway (extraction, transformation & loading) can take up a notable amount of time for large datasets, which can sometimes lead to bottlenecks in the sense that e.g. a nightly loading of data is no longer possible. There are several possible optimizations which are not specific to i2b2, but have long been established in the classic data warehouse field.
Disabling Index Maintenance during Loading
As mentioned in the query optimization page, the i2b2 database schema contains several indexes to speed up query performance. When data is being loaded into indexed tables, the databases has to simultaneously update or extend both the actual table row data as well as the related index structures, in order to maintain index consistency at all times. Depending on the number of indexes this can incur a notable performance impact due to concurrent write operations across different areas of the physical hard drives. This effect becomes especially large when tables are not incrementally extended (like in a transactional setting), but truncated and fully loaded (like in a typical data warehouse setting).
It is therefore standard practice in data warehousing to disable or drop indexes before truncating and (re-)loading data into large tables. Even though the database will spend additional time rebuilding the indexes after loading, performance is improved as it is carried out sequentially and not simultaneously to table row data loading.
Exception
This rule does not apply if a table is being maintained incrementally in the sense of "delta updates". In this case indexes may in fact be beneficial to quickly locate rows to be updated
The following Oracle SQL script contains statements to drop indexes from the OBSERVATION_FACT table (part 1 - to be inserted into an ETL pathway before fact loading) and to recreate the same indexes (part 2 - to be inserted into an ETL pathway after fact loading).
The script should be invoked with the credentials of the schema containing the OBSERVATION_FACT table
Please note that the script already contains both the optimized indexes as well as the LOCAL option for partitioning, which may need to be removed depending on availability and use of the partitioning feature.
Extending the COMMIT interval
Modern relational databases typically provide transactions to bundle write operations (INSERT, UPDATE) which are temporarily collected and then stored together when a "COMMIT" command is issued. Besides ensuring data consistency, this approach also allows the database to more efficiently store larger amounts of data at one time when compared to individually writing rows onto the disk.
Unless explicitly configured, database sessions often run in the so-called "AUTOCOMMIT" mode, which immediately write every single INSERT or UPDATE statement onto the disk. Raising the number of statements before an automatic commit is issued can significantly speed up data writing. }
Please note that the database will store all statements running up to the next commit in a temporary area (e.g. the TEMP tablespace), which needs to be adequately sized to avoid tablespace overflows.